III Year - II SEMESTER

T P C 3+1* 0 3

CE603-WATER RESOURCES ENGINEERING-I

Lecture: 3 hrs/Week Internal Assessment: Marks
Tutorial: 1 Hrs/Week Semester End Examination: Marks

Practical: -- Credits: 3

Course Learning Objectives:

The course is designed to

- 1. Introduce hydrologic cycle and its relevance to Civil engineering.
- 2. Make the students understand physical processes in hydrology and, components of the hydrologic cycle.
- 3. Appreciate concepts and theory of physical processes and interactions.
- 4. Learn measurement and estimation of the components hydrologic cycle.
- 5. Provide an overview and understanding of Unit Hydrograph theory and its analysis.
- 6. Understand flood frequency analysis, design flood, flood routing.
- 7. Appreciate the concepts of groundwater movement and well hydraulics.

Course Outcomes

At the end of the course the students are expected to

- a. Have a thorough understanding of the theories and principles governing the hydrologic processes.
- b. Be able to quantify major hydrologic components and apply key concepts to several practical areas of engineering hydrology and related design aspects.
- c. Develop Intensity-Duration-Frequency and Depth-Area Duration curves to design hydraulic structures.
- d. Be able to develop design storms and carry out frequency analysis.
- e. Be able to determine storage capacity and life of reservoirs.
- f. Develop unit hydrograph and synthetic hydrograph.
- g. Be able to estimate flood magnitude and carry out flood routing.
- h. Be able to determine aquifer parameters and yield of wells.
- i. Be able to model hydrologic processes.

SYLLABUS:

UNIT I

Introduction: Engineering hydrology and its applications, Hydrologic cycle, hydrological data-sources of data.

Precipitation:Types and forms, measurement, raingauge network, presentation of rainfall data, average rainfall, continuity and consistency of rainfall data, frequency of rainfall, Intensity-Duration-Frequency (IDF) curves, Depth-Area-Duration (DAD) curves, Probable Maximum Precipitation (PMP), design storm.

UNIT-II

Abstractions from Precipitation: Initial abstractions.

Evaporation: factors affecting, measurement, reduction

Evapotranspiration: factors affecting, measurement, control

Infiltration: factors affecting, Infiltration capacity curve, measurement,

infiltration indices.

UNIT-III

Runoff: Catchment characteristics, Factors affecting runoff, components, computation- empirical formulae, tables and curves, stream gauging, rating curve, flow mass curve and flow duration curve.

Hydrograph analysis: Components of hydrograph, separation of base flow, effective rainfall hydrograph and direct runoff hydrograph, unit hydrograph, assumptions, derivation of unit hydrograph, unit hydrographs of different durations, principle of superposition and S-hydrograph methods, limitations and applications of unit hydrograph, synthetic unit hydrograph.

UNIT-IV

Floods: Causes and effects, frequency analysis- Gumbel's and Log-Pearson type III distribution methods, Standard Project Flood (SPF) and Probable Maximum Flood (MPF), flood control methods and management.

Flood Routing: Hydrologic routing, channel and reservoir routing-Muskingum and Puls methods of routing.

UNIT-V

Groundwater: Occurrence, types of aquifers, aquifer parameters, porosity, specific yield, permeability, transmissivity and storage coefficient, types of wells, Darcy's law, Dupuit's equation- steady radial flow to wells in confined and unconfined aquifers, yield of a open well-recuperation test.

UNIT VI

Advanced Topics in Hydrology: Rainfall-runoff Modelling, instantaneous unit hydrograph (IUH) - conceptual models - Clark and Nash models, general hydrological models- Chow - Kulandaiswamy model.

TEXT BOOKS:

- 1. 'Engineering Hydrology' by Subramanya, K, Tata Mc Graw-Hill Education Pvt. Ltd, (2013), New Delhi.
- 2. 'Engineering Hydrology' by Jayarami Reddy, P, Laxmi Publications Pvt. Ltd., (2013), New Delhi
- 3. 'Applied hydrology'by Chow V.T., D.R Maidment and L.W. Mays, Tata McGraw Hill Education Pvt. Ltd., (2011), New Delhi.
- 4. 'Engineering Hydrology'by Ojha C.S.P, R. Berndtsson and P. Bhunya, Oxford University Press, (2010).

REFERENCES:

- 1. 'Water Resources Engineering', Mays L.W, Wiley India Pvt. Ltd, (2013).
- 2. 'Hydrology'by Raghunath. H.M., New Age International Publishers, (2010).
- 3. 'Engineering Hydrology –Principles and Practice'by Ponce V.M., Prentice Hall International, (1994).
- 4. 'Hydrology and Water Resources Engineering' by Patra K.C., Narosa Publications, (2011).
